Obestatin regulates cardiovascular function and promotes cardioprotection through the nitric oxide pathway
نویسندگان
چکیده
Patients with ischaemic heart disease or chronic heart failure show altered levels of obestatin, suggesting a role for this peptide in human heart function. We have previously demonstrated that GH secretagogues and the ghrelin gene-derived peptides, including obestatin, exert cardiovascular effects by modulating cardiac inotropism and vascular tone, and reducing cell death and contractile dysfunction in hearts subjected to ischaemia/reperfusion (I/R), through the Akt/nitric oxide (NO) pathway. However, the mechanisms underlying the cardiac actions of obestatin remain largely unknown. Thus, we suggested that obestatin-induced activation of PI3K/Akt/NO and PKG signalling is implicated in protection of the myocardium when challenged by adrenergic, endothelinergic or I/R stress. We show that obestatin exerts an inhibitory tone on the performance of rat papillary muscle in both basal conditions and under β-adrenergic overstimulation, through endothelial-dependent NO/cGMP/PKG signalling. This pathway was also involved in the vasodilator effect of the peptide, used both alone and under stress induced by endothelin-1. Moreover, when infused during early reperfusion, obestatin reduced infarct size in isolated I/R rat hearts, through an NO/PKG pathway, comprising ROS/PKC signalling, and converging on mitochondrial ATP-sensitive potassium [mitoK(ATP)] channels. Overall, our results suggest that obestatin regulates cardiovascular function in stress conditions and induces cardioprotection by mechanisms dependent on activation of an NO/soluble guanylate cyclase (sGC)/PKG pathway. In fact, obestatin counteracts exaggerated β-adrenergic and endothelin-1 activity, relevant factors in heart failure, suggesting multiple positive effects of the peptide, including the lowering of cardiac afterload, thus representing a potential candidate in pharmacological post-conditioning.
منابع مشابه
Exploring the role and inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning induced cardioprotection in rats
Objective(s): This study explored the inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning (RIPC) conferred cardioprotection. Materials and Methods: Blood pressure cuff was placed around the hind limb of the animal and RIPC was performed by 4 cycles of infla...
متن کاملRole of β-adrenergic receptors and nitric oxide signaling in exercise-mediated cardioprotection.
Exercise promotes cardioprotection in both humans and animals not only by reducing risk factors associated with cardiovascular disease but by reducing myocardial infarction and improving survival following ischemia. This article will define the role that nitric oxide and β-adrenergic receptors play in mediating the cardioprotective effects of exercise in the setting of ischemia-reperfusion injury.
متن کاملProtein S-nitrosylation and cardioprotection.
Nitric oxide (NO) plays an important role in the regulation of cardiovascular function. In addition to the classic NO activation of the cGMP-dependent pathway, NO can also regulate cell function through protein S-nitrosylation, a redox dependent, thiol-based, reversible posttranslational protein modification that involves attachment of an NO moiety to a nucleophilic protein sulfhydryl group. Th...
متن کاملMechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review
BACKGROUND Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditionin...
متن کاملEndothelium Derived Nitric Oxide Synthase Negatively Regulates the PDGF-Survivin Pathway during Flow-Dependent Vascular Remodeling
Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS) in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 21 شماره
صفحات -
تاریخ انتشار 2017